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1. State of art
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* Data and process mining in healthcare are very interesting

H . . . . . COL + Other

and important now, since data mining is widely used for .

classification and clustering (refer to the publication of Yoo et

al. 2012)
* Innovative methodological frameworks are being developed S

. . . . Ng scrpsning gFOBT + Other
and novel visualization schemes implemented (refer to
Giannoula et al. 2024) - fs
FIT
* There are also very interesting literature reviews in this field
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pONA { ‘b’ v ‘l mCoL
References: - gFOBT mSEPTY
Chen K, Abtahi F, Carrero JJ, Fernandez-Llatas C, Seoane F. Process mining and data mining applications in the ot e San ALK
domain of chronic diseases: A systematic review. Artif Intell Med. 2023;144:102645. 'D'f“‘
doi:10.1016/j.artmed.2023.102645
FS + gFOBT

Giannoula A, Comas M, Castells X, et al. Exploring long-term breast cancer survivors’ care trajectories using
dynamic time warping-based unsupervised clustering. ] Am Med Inform Assoc. 2024;31(4):820-831. Doutle contrast banum enema

doi:10.1093/jamia/ocad251 ) )
FIT: fecal immunochemical test

Kurniati A, Johnson O, Hogg D, Hall G. Process Mining in Oncology: a Literature Review. In: ; 2016. COL: colonoscopy,

doi:10.1109/INFOCOMAN.2016.7784260 gFOBT: guaiac fecal occult blood test

Kusuma GP, Kurniati AP, Rojas E, Mclnerney CD, Gale CP, Johnson OA. Process Mining of Disease Trajectories: A FO: flexible sigmoidoscopy
Literature Review. Stud Health Technol Inform. 2021;281:457-461. doi:10.3233/SHTI210200

Mendivil J, Appierto M, Aceituno S, Comas M, Rué M. Economic evaluations of screening strategies for the early Source : Mendivil J, Appierto M, Aceituno S, Comas M, Rué M. Economic evaluations

detection of colorectal cancer in the average-risk population: A systematic literature review. PLoS One. 2019 of screening strategies for the early detection of colorectal cancer in the average-
Dec 31;14(12):e0227251 risk population: A systematic literature review. PLoS One. 2019 Dec
31;14(12):e0227251. doi: 10.1371/journal.pone.0227251. PMID: 31891647; PMCID:

Yoo |, Alafaireet P, Marinov M, et al. Data mining in healthcare and biomedicine: a survey of the literature. J

Med Syst. 2012;36(4):2431-2448. doi:10.1007/510916-011-9710-5 PMC6938313

OECI Athens, 12 June 2025 4



United States |, - <
china | ' 7>+
* Chen's on data and process mining in the field United Kingdom | >
. . Taiwan _5.6%
of chronic pathology found 71 articles india [ >
published between 2000 and 2022 spain [
Portugal _4.2'/.
. . . Italy _4.2'/.
o Only 13 of which (18%) apply process mining austratia [ 2
techniques o SaudiArabia >
% Iran -2-8'/-
. . . . . ) France -z.s-/.
o Articles were mainly published in the United € swizerand  [%
States (22.5%) E  singapore [l
8 Romania -1.4‘/.
’ . . . Pakistan -1.4'/.
o Chen’s review also shows that process mining oman [NIRRLER
is mostly used in oncology because it enables Netherlands ='-4‘f-
o o e Jordan 1.4%
clinicians to analyze and detect complex Japan [ %
healthcare processes and enhance cancer reel [
Colombia -1.4'/.
treatment chie [l

Brazil -1.4-/.
Belgium -1.4'/.
0

- 4 6 8 10 12 14 16 18
Number of Publications

Source: Chen K, Abtahi F, Carrero JJ, Fernandez-Llatas C, Seoane F. Process mining and data mining applications in the
domain of chronic diseases: A systematic review. Artif Intell Med. 2023;144:102645. doi:10.1016/j.artmed.2023.102645

OECI Athens, 12 June 2025 5



Source: Chen K, Abtahi F, Carrero JJ, Fernandez-Llatas C, Seoane F. Process mining and data mining
applications in the domain of chronic diseases: A systematic review. Artif Intell Med.
2023;144:102645. doi:10.1016/j.artmed.2023.102645
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Kurniati et al. 2016, identified 37 publications
applying process mining techniques in oncology

Gynecological cancers accounted for 24 of those
articles, followed by

breast cancer (four)
colon, gastric, and lung cancer (three articles each)
rectal cancer (two)

and bladder, cervical, head and neck, and skin
cancer (one article each)

Process Mining in Oncology: a Literature Review

Angelina Prima Kurniati'>*, Owen Johnson', David Hogg!, Geoff Hall**
! School of Computing, University of Leeds, Leeds, UK
2School of Computing, Telkom University, Bandung, Indonesia
3 Leeds Institute of Cancer and Pathology, St James’s University Hospital, UK
4 School of Medicine, University of Leeds, Leeds, UK
*Corresponding author, email: scapk@leeds.ac.uk
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* Kusuma et al.’s review of studies that use process mining in identifying disease trajectories is also
worth noting in this context

o Only four papers published to date have directly applied process mining to disease trajectory

modelling

o There is currently very little research into the use of process mining for identifying disease
trajectories, and highlighted a lack of awareness of these methods

# Authors Country/ Data source N data Standard Disease PM Model Discovery Trajectory Conformance
Region coding Methodology visualisation algorithm approach checking
1 Kusuma et al.[9] Boston, BIDMC 46520 ICD9 General PM?> Directly- iDHM correlation Replay fitness,
USA Hospital followed measurement, precision,
graph binomial test generalisation, k-
folds cross validation
2 de Toledo et al.[10] Spain MBDS by the 225,000 ICD-9 Type2 KDD Heuristics net Heuristics n-grams N/A
public healthcare Diabetes miner and
provider Fuzzy miner
3 De Oliveiracet al.[11] England NHS Hospital 76,523 ICD-10 Sepsis N/A Private Metaheuristics Metaheuristics Replay fitness
Episode Statistic company app optimization optimisation
algorithm algorithm
4 Kusuma et al.[12] N/A (synthetic) 50 ICD-10 General PMZ Disco iDHM N/A Replay fitness,

OECI Athens, 12 June 2025

precision,
generalisation

0o

00Z0TTILHS/EETE OT:I0P "T9¥-£SF:T8T TTOT "WIOJU| [OUYID| Y}BSH PNIS "MIIASY DJN3ela)T VY sali03a(ed ]
3seasiq Jo SulUlN $S320.d YO UOSUYof ‘dd 31en ‘@) Asusaupn ‘3 sefoy ‘dy 1eluIny ‘do ewnsny :32.nos



De Oliveira et al. 2020

Hospital Episode Statistics (HES) database for all
patients in England with at least one hospital
episode for sepsis present in any diagnosis within
an episode spell between January 1, and
December 31, 2016

Metaheuristic algorithm was used to create a
“pathway” or process discovery model that best
described the sequence of clinical events prior to
and following the index hospitalization for sepsis

Label inputs: hospital episodes/hospital stays,
event log using ICD-10 codes

A diagnosis of cancer, gastrointestinal disorders,
pneumonia, or urinary tract infections most

often directly preceded the hospitalization for

Seps|s Source: Hugo De Ol|ve|ra,.Mart|n Prodgl, !_udov.|c

Lamarsalle, Matt Inada-Kim, Kenny Ajayi, Julia
SR A S . Wilkins, Sara Sekelj, Sue Beecroft, Sally Snow, Ruth
S Slater, Andi Orlowski, “Bow-tie” optimal pathway

Research and Applications

discovery analysis of sepsis hospital admissions

“Bow-tie” optimal pathway discovery analysis of sepsis using the Hospital Episode Statistics database in

dat:

hospital admissiu:iusingthu Hospital Episode Statistics England, JAMIA Open, VO[U me 3’ ISSUe 3’ OCtOber
ool 2020, Pages 439- OECI Athens, 12 June 2025 9

448, https://doi.org/10.1093/jamiaopen/o0aa039
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Figure 2. Bow-tie graph of the coded events in the 2 years before and 1 year after the index hospitalization for sepsis. The “bow-tie” graph is read from left to
right, with circles representing event nodes of the process model (ie, coded events). The links {or edges) from each circle represent the time-ordered sequence of
one coded event node following another. The sizes of nodes and links are proportional to the number of patients following this pathway. Note: The coded event
"septicemia” contains a number of additional sepsis-related codes in addition to A40 or A41 (and their derivatives). See Supplementary Materials for full details
of the HES ICD-10 codes included in this coded event.



2. New data-aware process mining
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* Overall approach
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Abbreviations: OD: original diagnosis; RCP: specialized MDTB; Chir: surgery; TTT: neoadjuvant/adjuvant treatment; Last: last contact; np: progression-free (black
arcs); pro: disease progression (red arcs); Soft vis: Site of tumor category = Soft tissue or Viscera; R0: Quality of 1st surgery = R0 margin; Deep: depth of tumor = deep
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* Input data modelling — Care event attributes

type | age | size | depth | site | quality | location | requesting
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Abbreviations: OD: original diagnosis; RCP: specialized MDTB; Chir: surgery; TTT: neoadjuvant/adjuvant treatment; Last: last contact; np: progression-free (black 12
arcs); pro: disease progression (red arcs); Soft vis: Site of tumor category = Soft tissue or Viscera; R0: Quality of 1st surgery = R0 margin; Deep: depth of tumor = deep




* Input data modelling - Cohort

NETSARC all patients diagnosed with sarcoma in 2013 who had surgery for their
primary tumor

2203 patients treated according to four care management strategies (1068, 108, 750,
and 277 patients):

o strategy 1 (1068) -complete initial management in the network with a Sarcoma
MDTB before/after the initial surgery

o strategy 2 (108)-outside initial management with a Sarcoma MDTB before the
initial surgery

o strategy 3 (750)-similar to 2 but with a Sarcoma MDTB after the initial surgery
o strategy 4 (277)-outside initial management and no Sarcoma MDTB

Strategy O denotes all patients

OECI Athens, 12 June 2025
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* Some results — strategies 1-2-3

Value of data-awareness:

o Confirmation of strategies with
surgery done inside in strategy 1
and outside in strategies 2 and 3

o TTT by far for deep tumor

o 2nd TTT in strategy 3 due to lower
surgery quality R1

o RChir in strategy 3 (250/741) by
far for lower quality R1 surgery
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Abbreviations: OD: original diagnosis; RCP: specialized MDTB; Chir: surgery; TTT: neoadjuvant/adjuvant treatment; Last: last contact; np: progression-free (black arcs); pro:
disease progression (red arcs); Soft vis: Site of tumor category = Soft tissue or Viscera; RO: Quality of 1st surgery = R0 margin; Deep: depth of tumor = deep



* Some results — higher precision (10 vs 15 nodes — strategy 2)
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3. Discussion / limitations
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* Some interesting facts

Our new process mining! approach allows us to represent specialized MDTBs in the pathways of adult
patients with soft tissue, visceral, or bone sarcoma

There were significant differences between care strategies MDTB-labelled sarcoma before initial surgery
and complete initial management in the network vs. MDTB-labelled sarcoma after initial surgery and initial
management outside the network
The event label “Second surgical excision/re-excision (Rchir)” and the attribute “R1 margin (histological
positive margins)” both appear in care strategy MDTB-labelled sarcoma after initial surgery and initial
management outside the network

MDTB-labelled sarcoma appear later in the patient care pathways, when the proportion of patients whose
disease has progressed increases

These results are consistent with the medical literature

Reference:

LRifki O, Peng Z, Perrier L, Xie X. Process mining with event attributes and transition
features for care pathway modelling. International Journal of Production Research.

0(0):1-25. d0i:10.1080/00207543.2024.2427888
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Limitations

It would be interesting to consider additional attributes in our process model, such as socioeconomic
status, race/ethnicity, the distance between the patient’s home and the hospital, and insurance status, all
of which may impact access to care

It would have been interesting to distinguish between radiotherapy and chemotherapy treatments; but
this information is not available

The choice of attributes and event labels ultimately depends upon of the quality of the data

In France, this could be done by applying the process mining methods developed here to the database of
the French NETSARC+ network matched to the French national health insurance database (SNDS). This
could illustrate the costs involved in and value of strategic management approaches and provide useful
insights to inform healthcare policymakers
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